Гаранин Алексей Валентинович

РАЗРАБОТКА СИСТЕМ ДИНАМИЧЕСКОГО МИКРОКЛИМАТА И СОЗДАНИЕ НА ИХ ОСНОВЕ ЭНЕРГОСБЕРЕГАЮЩИХ РЕЖИМОВ РАБОТЫ ОБОРУДОВАНИЯ

Специальность: 05.14.04 – Промышленная теплоэнергетика

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Ивановский государственный энергетический университет имени В.И. Ленина»

Научный руководитель	кандидат технических наук, доцент Пыжов Валерий Константинович			
Официальные оппоненты	доктор технических на Шелгинский Александ			
	кандидат технических к Крупнов Евгений Иван	•		
Ведущая организация:	ООО НТЦ «Промышле г. Иваново	нная энергетика»		
Защита состоится сертационного совета Д 212.064.01 энергетический университет имени ул. Рабфаковская 34, аудитория Б-23	в ГОУ ВПО «Ивановск В.И. Ленина» по адресу	гий государственный		
Отзывы в двух экземплярах, направлять по адресу: 153003, г. Ин ИГЭУ. Тел. (4932) 38–57–12, факс (49	ваново, ул. Рабфаковска	ая 34, Учёный совет		
С диссертацией можно ознакомиться в библиотеке ГОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина», с авторефератом - на сайте ИГЭУ www.ispu.ru				
Автореферат разослан ""	' <u>сентября</u> 2010г.			
Учёный секретарь диссертационного совета		А.В. Мошкарин		

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В промышленном производстве с монотонным и напряжённым характером работы стабильные параметры микроклимата повышают утомляемость персонала и отрицательно сказываются на производительности труда. Одним из наиболее эффективных методов борьбы с данной проблемой является создание динамически меняющихся наиболее важных параметров микроклимата (температуры, относительной влажности) в рабочей зоне производственного помещения. Комплекс параметров воздуха в рабочей зоне, под воздействием которых средневзвешенная температура кожи человека совершает периодические отклонения от оптимальных значений с определённой частотой, называется динамическим микроклиматом. При этом остальные показатели теплового состояния человека остаются на уровне, соответствующем гигиеническим рекомендациям. Как показали эксперименты в НИИ охраны труда в Санкт-Петербурге изменение условий теплоотдачи человека, занятого лёгкой монотонной работой, при динамическом микроклимате повышает психофизиологическую активность и работоспособность за счёт возбуждения центральной нервной системы.

Для создания рассмотренных параметров воздуха в помещении необходимо использовать систему кондиционирования динамического микроклимата (СКДМ). Такая система должна подавать в помещение воздух с параметрами, которые непрерывно меняются во времени, при этом температура и влажность воздуха в рабочей зоне должны устанавливаться в соответствии с заданным законом.

Поддержание заданных параметров микроклимата, определение характеристик приточного воздуха и нагрузок на СКДМ представляет собой довольно сложную научную и техническую задачу. На промышленное здание воздействует множество тепловых потоков, непрерывно меняющихся во времени: наружный климат; солнечная радиация; тепловые потоки, проходящие через ограждающие конструкции здания; тепловой поток, вносимый инфильтрационным воздухом; выделения теплоты от различного оборудования, установленного в здании; тепловой поток от освещения, людей и т.д. Для решения поставленной задачи необходимо создание математической модели климатического режима промышленного здания, учитывающей все перечисленные тепловые воздействия. Модель должна учитывать кроме того изменение температуры и влажности внутреннего воздуха по высоте и быть применимой как для одноэтажных, так и многоэтажных зданий с помещениями различного назначения.

Часто промышленные объекты с повышенными требованиями к микроклимату потребляют необоснованно большое количество энергии. Применение моделирования для конкретного промышленного объекта дает возможность предложить оптимальные режимы работы системы поддержания микроклимата и разработать комплекс энергосберегающих мероприятий.

С использованием действующих нормативных документов по проектированию теплозащиты зданий можно определять все перечисленные тепловые воздействия только для расчётных параметров наружного и внутреннего воздуха. Они не позволяют находить количество энергии, аккумулируемое ограж-

дающими конструкциями при меняющихся внутренних и внешних условиях. Аккумуляция энергии может быть значительной и пренебрежение ей искажает реальное энергопотребление.

Математическое описание состояния объекта в любой момент времени позволит определить, когда и на какую мощность необходимо включать СКДМ для создания динамического микроклимата, дает возможность выбрать оборудование СКДМ и способ регулирования его загрузки, а так же предложить мероприятия, направленные на снижение количества потребляемой энергии.

Моделирование и разработка систем динамического микроклимата и создание на их основе энергосберегающих режимов работы оборудования является актуальной научной и технической задачей. Решению этой задачи посвящена данная работа, практическое приложение которой осуществлено на одном из технологических производств машиностроительного завода ОАО «МКБ «Факел» (г. Химки Московской обл.).

Объект исследования. Системы динамического микроклимата для различных помещений.

Предмет исследования. Нестационарные тепловлажностные процессы в ограждающих конструкциях и помещениях зданий различного назначения.

Цель работы. Создание модели динамического микроклимата в промышленном здании, учитывающей многочисленные воздействия на это здание, и предусматривающей возможность разработки комплекса энергосберегающих мероприятий.

В данной работе решаются следующие задачи:

- анализ методов расчёта параметров динамического микроклимата и существующих математических моделей климатического режима здания;
- разработка математической модели динамического микроклимата промышленного здания, связанной с ней модели нестационарных тепловых процессов в многослойных ограждающих конструкциях и алгоритма учёта изменения температуры по высоте помещения;
 - реализация модели динамического микроклимата на ЭВМ;
- проверка адекватности модели динамического микроклимата на действующем промышленном здании;
- расчёт переменной нагрузки на систему кондиционирования, необходимой для создания динамического микроклимата;
- расчёт, с учётом нестационарности тепловых процессов, потребностей в энергии, затрачиваемой на поддержание микроклимата, при внедрении энергосберегающих мероприятий: теплоизоляция ограждений, рекуперация теплоты и рециркуляция воздуха;
- разработка рекомендаций по подбору элементов системы кондиционирования для создания динамического микроклимата, учитывающих нестационарность тепловых процессов.

Методы исследования. Теоретические методы исследования основываются на системе уравнений тепловых балансов, в которую входят дифференциальное уравнение теплопроводности и интегральные выражения для определе-

ния тепловых потоков. Решение системы базируется на методе конечных разностей с применением неявной разностной схемы Кранка-Николсона и метода итераций.

Достоверность и обоснованность результатов работы подтверждается соответствием исходных математических уравнений и физических допущений поставленным задачам исследования; обеспечивается применением фундаментальных положений теплопроводности, термодинамики и теплопередачи, обоснованностью выбора математической модели и проверкой её адекватности, полнотой обзора литературных данных, сходством полученных результатов с результатами других исследователей и данными компьютерного моделирования.

Обоснование соответствия диссертации паспорту научной специальности 05.14.04 — «Промышленная теплоэнергетика»

Соответствие диссертации формуле специальности

В соответствии с формулой специальности 05.14.04 – «Промышленная теплоэнергетика», объединяющей исследования по совершенствованию промышленных теплоэнергетических систем, по разработке и созданию нового и наиболее совершенного теплотехнического и теплового технологического оборудования, в диссертационном исследовании разработаны математические модели нестационарности процесса передачи теплоты через многослойную твёрдую стенку, динамического микроклимата промышленного здания и численные методы их решения, позволяющие определить зависимость нагрузки на систему кондиционирования при создании динамического микроклимата и расход энергии промышленным зданием в случае применения энергосберегающих мероприятий (тепловая изоляция различной толщины, рекуперация воздуха, рециркуляция воздуха) от времени. Такие модели позволяют знать, когда и на какую мощность необходимо включать СКДМ для создания динамического микроклимата, дают возможность выбрать оборудование СКДМ и способ регулирования его загрузки, а так же предложить мероприятия, направленные на снижение количества потребляемой энергии.

Соответствие диссертации области исследования специальности

Отражённые в диссертации научные положения соответствуют области исследования специальности 05.14.04 — «Промышленная теплоэнергетика»: поиск структур и принципов действия теплотехнического оборудования, которые обеспечивают сбережение энергетических ресурсов, уменьшение энергетических затрат на единицу продукции, сбережение материальных ресурсов, направляемых на изготовление теплопередающего и теплоиспользующего оборудования, защиту окружающей среды.

Пункту 1 «Разработка научных основ сбережения энергетических ресурсов в промышленных теплоэнергетических устройствах и использующих тепло системах и установках» соответствует следующий результат диссертации, отражённый в поставленных задачах и имеющий научную новизну.

Математическая модель динамического микроклимата промышленного здания, предложенная Гараниным А.В. на основании численного решения дифференциального уравнения теплопроводности и сопряжённой задачи внешнего

и внутреннего теплообмена, в отличии от существующих моделей климатического режима зданий, позволяет учесть нестационарные тепловые процессы в многослойных ограждающих конструкциях зданий и определить расход энергии, необходимой для создания заданных динамических параметров воздуха в рабочей зоне. Модель позволяет учесть эффект от применения энергосберегающих мероприятий (тепловая изоляция различной толщины и расположения, рециркуляция воздуха, рекуперация теплоты). Модель состоит из трёх взаимосвязанных процессов: расчёт нестационарной передачи теплоты через многослойную стенку, решение сопряжённой задачи внутреннего и внешнего теплообмена в системе «наружный воздух — ограждающие конструкции — внутренний воздух», позонного определения внутренних температур и тепловыделений с целью учёта изменения температуры воздуха по высоте помещения.

Научная новизна

- 1. Разработаны алгоритмы и составлены математические модели, учитывающие внешние и внутренние воздействия на здание:
- нестационарные процессы передачи теплоты через многослойные ограждающие конструкции, что позволяет учесть их аккумулирующую способность;
- потери теплоты через разноудаленные от наружных стен участки пола с применением понятия «эквивалентной толщины грунта»;
 - изменение параметров воздуха по высоте помещения;
- этажность здания с помещениями различного функционального назначения;
- математическая модель параметров наружного климата (температуры, относительной влажности, солнечной радиации).
- 2. Выполнено моделирование теплоустойчивости трехслойной ограждающей конструкции, позволяющее определить температуры и тепловые потоки в ограждении в любой момент времени за установленный цикл его эксплуатации.
- 3. Впервые рассчитаны параметры допустимого динамического микроклимата и приточного воздуха для промышленного здания, определены расходы энергии для поддержания требуемых параметров в годовом цикле эксплуатации здания.

Практическая значимость работы.

- 1. Предложена математическая модель, динамического микроклимата промышленного здания, дающая возможность рассчитать график нагрузки на систему кондиционирования с учётом динамического режима эксплуатации здания.
- 2. Разработан алгоритм реализации математической модели динамического микроклимата на ЭВМ.
- 3. С помощью разработанной модели выполнены численные эксперименты по определению энергопотребления промышленным зданием в зависимости от различных факторов, определяющих микроклимат и энергозатраты на его создание.

4. Разработанная математическая модель реализована в виде программного комплекса, предназначенного для автоматического управления системами кондиционирования воздуха.

Реализация результатов работы. Результаты диссертационной работы в виде компьютерных программ моделирования динамического микроклимата для годового цикла эксплуатации промышленного здания используются в ОАО «МКБ «Факел» для расчёта годовых потребностей зданий в энергии и выбора наиболее эффективных энергосберегающих мероприятий с учётом обеспечения требуемых параметров воздуха в рабочей зоне. Программный комплекс передан для проведения энергетического аудита и проектирования в ООО «НТЦ «Промышленная энергетика» и используется в учебном процессе на кафедре «Промышленная теплоэнергетика» при подготовке инженеров по специальности 140104 — «Промышленная теплоэнергетика» и 140106 — «Энергообеспечение предприятий».

Личный вклад автора в получении результатов исследования состоит:

- 1. В разработке модели динамического микроклимата и отдельных алгоритмов, характеризующих внешние и внутренние воздействия на здание.
- 2. В проведении физического эксперимента по проверке адекватности разработанной математической модели.
- 3. В выполнении вычислительных экспериментов по исследованию тепловых процессов в многослойных ограждающих конструкциях и определении затрат энергии промышленным зданием при динамическом режиме его эксплуатации.
- 4. В расчёте с использованием математической модели нагрузок на систему кондиционирования для создания динамического микроклимата в промышленном здании.

На защиту выносятся:

- 1. Математическая модель динамического микроклимата промышленного здания и отдельные алгоритмы, характеризующие внешние и внутренние воздействия на это здание.
 - 2. Результаты проверки адекватности разработанной модели.
- 3. Результаты численных экспериментов по исследованию тепловых процессов в многослойных ограждающих конструкциях.
- 4. Результаты моделирования динамического микроклимата в здании и предложенные энергосберегающие мероприятия.

Апробация работы:

Основные положения диссертации, результаты теоретических и расчётных исследований и проверки адекватности разработанной математической модели докладывались и обсуждались на Региональной научно—технической конференции студентов и аспирантов «Теплоэнергетика» — г.Иваново 2006 г., представлены на Международной научно—технической конференции «Состояние и перспективы развития энерготехнологии» (XIV Бенардосовские чтения) — г. Иваново 2007 г., а так же на региональной научно—технической конференции студентов и аспирантов «Энергия—2009» — г.Иваново 2009 г., на Международной научно—технической конференции «Состояние и перспективы развития

электротехнологии» (XV Бенардосовские чтения) — г.Иваново 2009 г, на пятой региональной научно—технической конференции студентов и аспирантов «Энергия-2010» — г.Иваново 2010 г. и на заседаниях кафедры ПТЭ Ивановского энергетического университета — г.Иваново 2010 г. и ТМПУ Московского энергетического института (технического университета) — г.Москва 2010 г.

Публикации. Основное содержание диссертации опубликовано в 9-ти печатных работах.

Объём и структура диссертации. Диссертация состоит из введения, 4–х глав, основных выводов и содержит 209 страниц, 71 рисунок, 15 таблиц, список использованной литературы из 103 наименований

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулирована её цель, указаны научная новизна, практическая ценность и основные положения, выносимые на защиту.

В первой главе выполнен обзор работ посвященных созданию и исследованию динамического микроклимата (ДМ), проанализировано современное состояние проблемы математического моделирования теплового и влажностного режима здания, выполнен обзор существующих энергосберегающих мероприятий, применяемых для промышленных зданий.

Теория расчёта параметров ДМ и оценки теплового состояния человека создана трудами Л.В. Павлухина, Ю.Н. Хомутецкого, В.В. Ловцова, П.О. Фангера, Л. Банхиди. ДМ делится на «оптимальный» и «допустимый». В рассматриваемом производственном здании целесообразно создать допустимый ДМ, параметры которого рассчитываются исходя из периодического отклонения средневзвешенной температуры кожи $(1\pm0,3)$ °С. В настоящее время для расчёта годового цикла эксплуатации здания с ДМ известны только алгоритмы решения отдельных задач:

- 1. Линеаризованная математическая модель помещения. Зависимость изменения температуры регулируемого объёма воздуха записывается линейным дифференциальным уравнением первого порядка.
- 2. Модель на базе теории регулярного процесса. Зависимость изменения температуры внутреннего воздуха от времени можно описать переходной функцией апериодического звена первого порядка.
- 3. Модель теплового режима здания как единой теплоэнергетической системы.
- 4. Модель, построенная на уравнениях тепловых балансов. Состоит из нескольких подчинённых моделей, каждая из которых описывает отдельный тепловой поток с помощью уравнения теплового баланса.
- 5. Модель на базе теории систем автоматического регулирования. Для каждого элемента системы кондиционирования определяется передаточная функция.
- 6. Подход на основе ячеечных моделей и связанным с ними математическим аппаратом теории цепей Маркова.

- 7. Математическая модель теплового режима здания с пассивной системой солнечного теплоснабжения. Модель предполагает использование аккумулятора теплоты (массивная стена) и построена на уравнениях теплового баланса каждого элемента, входящего в конструкцию пассивной системы теплоснабжения.
- 8. Расчёт воздухообмена с применением «коэффициента эффективности».

Некоторые модели просты для реализации: линеаризованная (1), на базе теории САР (5), ячеечная (6), но не учитывают многих факторов, воздействующих на здание и (или) конструктивных особенностей здания. Это снижает точность моделирования. Другие модели учитывают слишком большое количество воздействий, что значительно усложняет моделирование.

Таким образом для определения расходов энергии промышленным зданием в динамическом режиме его эксплуатации необходимо разработать математическую модель теплового и влажностного режима, подходящую для моделирования ДМ и учитывающую все основные факторы, воздействующие на здание. При этом модель должна легко реализовываться на ЭВМ.

Во второй главе сформулированы требования, предъявляемые к математической модели динамического микроклимата. Разработана математическая модель динамического микроклимата промышленного здания.

Модель учитывает следующие тепловые потоки:

- 1. Тепловой поток через заполнение светового проёма. Учитываются потоки от перепада температур и от солнечной радиации.
- 2. Тепловые потоки, проходящие через многослойные стены и покрытие, определяются одномерным дифференциальным уравнением теплопроводности

$$\frac{\partial t_{\hat{1}\tilde{a}\tilde{o}}}{\partial \tau} = a \frac{\partial^2 t_{\hat{1}\tilde{a}\tilde{o}}}{\partial x^2},\tag{1}$$

где а — коэффициент температуропроводности, m^2/c ; x — текущая координата, m; τ — время, c; t_{orp} — температура ограждения на расстоянии x в момент времени τ , ${}^{\circ}C$.

Для 1-го слоя, контактирующего с наружным воздухом, граничные условия будут соответствовать граничным условиям третьего рода

$$\frac{\partial t_{(0),0}}{\partial x} = \frac{\alpha_0}{\lambda_0} \left(t_i(\tau) - t_{(0),0}(\tau) \right) + \frac{J_{\hat{a},\tilde{a}}(\tau)\rho_{\tilde{n}\tilde{i}}\,\dot{e}_i\,r_{\hat{i}}\,\dot{a}\dot{e}}{\lambda_0}, \tag{2}$$

где α_0 – коэффициент конвективного теплообмена на наружной поверхности ограждающей конструкции, $\mathrm{Bt/(m^2K)};\ J_{\mathrm{B,r}}(\tau)$ – интенсивность солнечной радиации на вертикальную (для стен) и горизонтальную (для покрытия) поверхности, $\mathrm{Bt/m^2};\ \rho_{\mathrm{солн}}$ – коэффициент поглощения солнечной радиации материалом наружной поверхности ограждающей конструкции; λ_0 – коэффициент теплопроводности наружного слоя ограждающей конструкции, $\mathrm{Bt/(m\ K)};\ t_{(0),0}$ – температура на наружной поверхности наружного слоя ограждающей конструкции, °C.

Граничные условия 4-го рода в плоскости контакта слоёв:

$$\lambda_0 \frac{\partial t_{(n),0}}{\partial x_0} = -\lambda_1 \frac{\partial t_{(0),1}}{\partial x_1}; \quad \lambda_1 \frac{\partial t_{(n),1}}{\partial x_1} = -\lambda_2 \frac{\partial t_{(0),2}}{\partial x_2}; \quad (3)$$

$$t_{(n),0} = t_{(0),1}; \ t_{(n),1} = t_{(0),2},$$
 (4)

где $t_{(n),0}$; $t_{(0),1}$; $t_{(n),1}$; $t_{(0),2}$ — соответственно температуры ограждений на внутренней поверхности наружного (нулевого) слоя; на наружной поверхности первого слоя; на внутренней поверхности первого слоя; на наружной поверхности внутреннего (второго) слоя, °C; λ_0 , λ_1 , λ_2 , x_0 , x_1 , x_2 — соответственно коэффициенты теплопроводности, BT/(MK), и толщины, м, слоёв ограждений

Граничное условие для 2-ого слоя с внутренней стороны здания

$$\frac{\partial t_{(n),2}}{\partial x} = \frac{\alpha_2}{\lambda_2} \left(t_{(n),2}(\tau) - t_{\hat{a}}(\tau) \right), \tag{5}$$

где α_2 — коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, $Bt/(m^2K)$,

Начальные условия для уравнения (1) определяются заданными в начальный момент законами распределения температуры в каждом слое:

$$t_0(x,0) = g_1(x);$$
 $t_1(x,0) = g_2(x);$ $t_2(x,0) = g_3(x).$ (6)

Система уравнений (1)—(6) записывается для всех ограждающих элементов и решается методом конечных разностей. В результате решения находится распределение температур в ограждающих конструкциях здания в любой момент времени.

Вводится разностная сетка и непрерывные функции температур рассматриваются в заданные k—е моменты времени. Интервал между k—м и (k+1)—м моментами времени в течение всего расчёта постоянен и равен $\Delta \tau$. Шаг по координате так же постоянен и равен Δx .

При решении системы уравнений (1)—(6) исследованы три разностные схемы (явная, неявная и шеститочечная), которые решались методом прогонки. Наиболее точные результаты получены при использовании 6—ти точечной разностной схемы.

Разностный аналог граничного условия со стороны наружного воздуха

$$\begin{split} -f_{0} \cdot t_{(1),0}^{k+1} + \left(1 + f_{0} \cdot \left(1 + b_{0}\right)\right) \cdot t_{(0),0}^{k+1} &= f_{0} \cdot t_{(1),0}^{k} + \left(1 - f_{0} \cdot \left(1 + b_{0}\right)\right) \cdot t_{(0),0}^{k} + \\ +f_{0} \cdot b_{0} \cdot t_{i}^{k} + f_{0} \cdot b_{0} \cdot t_{i}^{k+1} + \frac{\Delta \tau \rho_{\tilde{m} \, \tilde{e}i} \cdot r_{\hat{i} \, \acute{a}\ddot{e}}}{\tilde{n} \cdot \rho \cdot \Delta x} \cdot \left(J^{k} + J^{k+1}\right) \end{split} \tag{7}$$

Разностная схема для внутренних точек слоя

$$\begin{aligned} &-0.5 \cdot f_{j} \cdot t_{(i-1),j}^{k+1} + \left(1 + f_{j}\right) \cdot t_{(i),j}^{k+1} - 0.5 \cdot t_{(i+1),j}^{k+1} = \\ &= 0.5 \cdot f_{0} \cdot t_{(i-1),j}^{k} + \left(1 - f_{j}\right) \cdot t_{(i),j}^{k} + 0.5 \cdot f_{j} \cdot t_{(i+1),j}^{k} \end{aligned} \tag{8}$$

Разностный аналог граничного условия на стыке слоёв 0 и 1

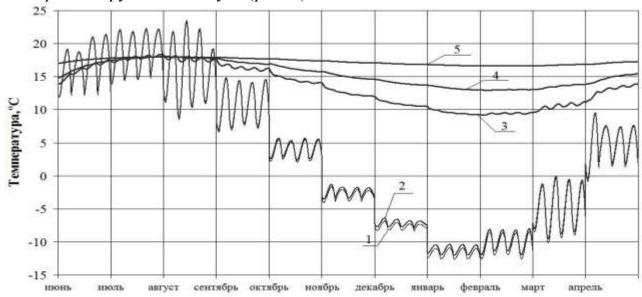
$$\lambda_{0} \cdot \left(0.5t_{(n-1),0}^{k} + 0.5t_{(n-1),0}^{k+1} - 0.5t_{(0),1}^{k} - 0.5t_{(0),1}^{k+1}\right) = \\ -\lambda_{1} \cdot \left(0.5t_{(0),1}^{k} + 0.5t_{(0),1}^{k+1} - 0.5t_{(1),1}^{k} - 0.5t_{(1),1}^{k+1}\right)$$

$$(9)$$

Разностный аналог граничного условия на стыке слоёв 1 и 2

$$\begin{split} &\lambda_{1} \cdot \left(0.5t_{(n-1),1}^{k} + 0.5t_{(n-1),1}^{k+1} - 0.5t_{(0),2}^{k} - 0.5t_{(0),2}^{k+1}\right) = \\ &= -\lambda_{2} \cdot \left(0.5t_{(0),2}^{k} + 0.5t_{(0),2}^{k+1} - 0.5t_{(1),2}^{k} - 0.5t_{(1),2}^{k+1}\right) \end{split} \tag{10}$$

Разностный аналог граничного условия со стороны внутреннего воздуха


$$-f_{2} \cdot t_{(n-1),2}^{k+1} + \left(1 + f_{2} \cdot (1 + b_{2})\right) \cdot t_{(n),2}^{k+1} = f_{2} \cdot t_{(n-1),2}^{k} + \left(1 - f_{2} \cdot (1 + b_{2})\right) \cdot t_{(n),2}^{k} + f_{2} \cdot b_{2} \cdot t_{\hat{a}}^{k} + f_{2} \cdot b_{2} \cdot t_{\hat{a}}^{k+1}$$

$$(11)$$

где f_0 , f_j , f_2 - критерии Фурье для каждого слоя ограждающей конструкции, b_0 , b_2 - критерии Био для внешних слоёв.

Удельный тепловой поток от ограждающих конструкций в помещение, $q_{\tilde{n}\tilde{o}\tilde{a}i}$, Bt/m^2 , определяется интегральным выражением уравнения (5).

Разработанная модель теплопередачи была проверена на частном примере трёхслойной стенки с различными вариантами расположения слоя тепловой изоляции относительно других слоёв в расчёте годового цикла эксплуатации здания. Наиболее эффективным оказался вариант расположения слоя изоляции со стороны наружного воздуха (рис. 1).

Рис. 1. Изменение температур в трёхслойной стенке в течение года (тепловая изоляция со стороны наружного воздуха):

1— температура наружного воздуха; 2 — температура на наружной поверхности конструкции; 3 — температура на стыке между слоями 0 и 1; 4 — температура на стыке между слоями 1 и 2; 5 — температура на внутренней поверхности конструкции.

3. Теплопотери через пол.

По используемым в инженерной практике значениям надбавок к термическим сопротивлениям зон пола, находится полиномиальная зависимость 4-й степени, учитывающая удаление расчётных зон от наружных стен. При этом сложно направленные тепловые потоки, проходящие через слои грунта разной толщины, приводятся к модели, которую можно описать одномерным дифференциальным уравнением теплопроводности.

4. Потоки теплоты, вносимые инфильтрационным воздухом. Учитывается разница энтальпий внутреннего и фильтрующегося воздуха.

- 5. Тепловой поток, вносимый приточным воздухом. Определяется из уравнения теплового баланса здания с проверкой температуры приточного воздуха на соответствие условиям комфортности
- 6. Тепловой поток, возникающий в результате организованного удаления воздуха из помещения. В данном случае из помещения удаляется воздух в количестве L_{va} , M^3/c , а наружный воздух в количестве L_{va} – L_{np} , M^3/c , с энтальпией h_н, кДж/кг, поступает через неплотности ограждений.
- 7. Тепловой поток от работающего и не работающего оборудования разделён на две части: «активную» – поток от оборудования, выделяющее потоки теплоты и вещества и «пассивную» - это мебель, колонны, массы станка, продукция и т.д. Для «активного» оборудования количество тепловыделений задаётся законом изменения мощности во времени. Для учёта «пассивной» части оборудования принято, что на интервале времени Δτ тепловой поток постоянен:

$$Q_{\hat{1}\,\acute{a}}^{\ddot{i}} = \frac{\tilde{N}_{\hat{1}\,\acute{a}}\dot{1}_{\hat{1}\,\acute{a}}\Delta t_{\hat{1}\,\acute{a}}}{\Delta \tau},\tag{12}$$

где $C_{\hat{\imath}\,\hat{a}}$ и $M_{\hat{\imath}\,\hat{a}}$ – соответственно удельная теплоёмкость оборудования, Дж/(кгК), и масса оборудования, кг; $\Delta t_{\hat{1}\hat{a}}$ – изменение температуры «пассивного» оборудования за время $\Delta \tau$.

Закон изменения температуры «пассивного» оборудования принят в виде

$$t_{\hat{1}\acute{a}}(\tau) = \left(t_{\hat{1}\acute{a}\acute{a}\acute{a}\dot{a}\dot{a}\dot{a}} - t_{\acute{o}\tilde{n}\tilde{e}}\right)e^{-k_{\hat{1}\acute{a}}\cdot\tau} + t_{\acute{o}\tilde{n}\tilde{e}}, \tag{13}$$

где t_{об нач} - начальное значение температуры оборудования, °C; t_{усл} условная температура помещения, \Box °C; k_{ob} – постоянная времени оборудования, 1/ч.

- 8. Тепловые потоки от освещения и от людей учитывается только в рабочее время суток.
- 9. Тепловой поток, идущий на нагрев (охлаждение) внутреннего воздуха. Внутренний воздух, в количестве $V_{\text{в}}$, м³, с плотностью $\rho_{\text{в}}$, кг/м³, под действием тепловых потоков изменяет энтальпию от h_s^k до h_s^{k+1} , кДж/кг, за время $\Delta \tau$, с,

$$Q_{\hat{a}\hat{i}\;\hat{o}\hat{o}\hat{o}\hat{a}\hat{i}\;\hat{c}\hat{a}\hat{o}\hat{o}\hat{a}} = \frac{V_{\hat{a}}\rho_{\hat{a}}\left(h_{\hat{a}}^{k} - h_{\hat{a}}^{k+1}\right)10^{3}}{\Delta\tau},\tag{14}$$

Влагосодержание внутреннего воздуха $x_{\hat{a}}^{k+1}$, кг/кг определяется из уравнения смешения инфильтрационного, приточного, удаляемого воздуха и внутреннего воздуха начального состояния, и баланса помещения по влаге ΔW , кг/с.

10. Тепловой поток, отдаваемый приточному воздуху в рекуператоре.

Энтальпия наружного воздуха на выходе из рекуператора

$$h_{i_{-\delta}}(\tau) = h_{i}(\tau) + \frac{\eta L_{\delta\ddot{a}} \rho_{\hat{a}} \left(h_{\delta\tilde{o}}(\tau) - h_{\hat{a}_{-\delta}}(\tau) \right)}{L_{i}}, \tag{15}$$

где $h_{\rm H}$ р $h_{\rm H}$ $h_{\rm vx}$ — соответственно энтальпии воздуха, кДж/кг наружного на входе и выходе из рекуператора и удаляемого на входе в рекуператор; $\eta - K\Pi Д$ рекуператора; $h_{\text{в_p}}$ - энтальпия внутреннего воздуха на выходе из рекуператора, кДж/кг, определяется исходя из обеспечения «незамерзания» рекуператора.

11. Учёт влияния наружного климата.

Зависимости температуры и относительной влажности наружного воздуха от времени для каждых суток аппроксимированы по статистическим данным полиномами третьей степени, а плотности потока солнечной радиации, $J_{\text{в,r}}(\tau)$, $B\tau/\text{m}^2$ – двумя полиномами второй степени.

Все представленные тепловые потоки, изменяются во времени и образуют сопряжённую задачу сложного теплообмена в помещении. Под её решением понимается нахождение в каждый расчётный (k+1)—й момент времени всех температур системы «наружный воздух—ограждающие конструкции—внутренний воздух». Для этого календарный год разбивается на отрезки времени длиной $\Delta \tau$. Результаты расчёта на предыдущем (k-ом) моменте времени на каждом шаге расчёта принимаются за начальное условие для следующего (k+1-го) момента времени. Замыкающим является уравнение сохранения энергии.

$$\sum \frac{dQ_i}{d\tau} = 0. \tag{16}$$

В заключении определяются основные показатели СКВ: тепловая мощность, подаваемая системой кондиционирования в здание и тепловая (холодильная) мощность, потребляемая СКВ, а также годовые расходы энергии.

Разработанная модель применима как для одноэтажных, так и для многоэтажных зданий. Применение модели к многоэтажным зданиям осуществляется составлением отдельного теплового баланса для каждого помещения, где за температуру наружного воздуха принимается температура соседнего помещения.

Для учёта изменения температуры воздуха по высоте, помещение разделено на m равных зон. Верхняя зона имеет №1, нижняя - №m. Температуры зон в k+1–й момент времени имеют значения t_1^{k+1} , t_i^{k+1} , t_m^{k+1} . Тепловые потоки в зоне учитываются только от предметов, находящихся в ней.

Для каждой зоны записываются уравнения теплового баланса для (k+1)-го момента времени. Напрмер, для 1-й зоны оно имеет вид:

$$\begin{split} &\alpha_{2}^{\tilde{n}\tilde{o}}\Big(t_{(n),2_{-1}}^{\tilde{n}\tilde{o}(\hat{A})}-t_{1}^{k+1}\Big)\hat{A}_{\tilde{n}\tilde{o}_{-1}}^{\hat{A}}+\alpha_{2}^{\tilde{n}\tilde{o}}\Big(t_{(n),2_{-1}}^{\tilde{n}\tilde{o}(C)}{}^{k+1}-t_{1}^{k+1}\Big)\hat{A}_{\tilde{n}\tilde{o}_{-1}}^{C}+\alpha_{2}^{\tilde{n}\tilde{o}}\times\\ &\times\Big(t_{(n),2_{-1}}^{\tilde{n}\tilde{o}(P)}{}^{k+1}-t_{1}^{k+1}\Big)\hat{A}_{\tilde{n}\tilde{o}_{-1}}^{P}+\alpha_{2}^{\tilde{n}\tilde{o}}\Big(t_{(n),2_{-1}}^{\tilde{n}\tilde{o}(C)}{}^{k+1}-t_{1}^{k+1}\Big)\hat{A}_{\tilde{n}\tilde{o}_{-1}}^{C}+\alpha_{2}^{\tilde{i}\hat{1}\hat{e}\tilde{o}}\Big(t_{(n),2_{-1}}^{\tilde{i}\hat{1}\hat{e}\tilde{o}}+t_{1}^{k+1}\Big)\times\\ &\times\hat{A}_{\tilde{i}\hat{1}\hat{e}\tilde{o}}+j_{\tilde{n}\tilde{o}1}^{k+1}\hat{A}_{\tilde{n}\tilde{o}_{-1}}\Big(h_{1}^{k+1}-t_{1}^{k+1}\tilde{n}_{\hat{a}}-x_{\hat{a}}^{k+1}\Big(r_{\hat{a}.\tilde{i}}+\tilde{n}_{\hat{a}.\tilde{i}}t_{1}^{k+1}\Big)\Big)\Big|_{L_{\tilde{i}\tilde{o}}< L_{\tilde{o}\tilde{a}}}+Q_{\tilde{i}\hat{a}_{-1}}^{\hat{a}k+1}+\\ \end{split}$$

$$\begin{split} & + \frac{C_{\hat{1}\,\hat{a}} M_{\hat{1}\,\hat{a}\,\hat{1}} \Bigg(t_{\hat{1}\,\hat{a}}^{k} - \Bigg(t_{\hat{1}\,\hat{a}}^{k} - \frac{\alpha_{\hat{e}} t_{1}^{k+1} + \alpha_{\hat{e}} t_{\hat{1}\,\hat{e}\,\hat{\delta}}^{k+1}}{\alpha_{\hat{e}} + \alpha_{\hat{e}}} \Bigg) e^{-k_{\hat{1}\,\hat{a}}\Delta\tau} - \frac{\alpha_{\hat{e}} t_{1}^{k+1} + \alpha_{\hat{e}} t_{\hat{1}\,\hat{e}\,\hat{\delta}}^{k+1}}{\alpha_{\hat{e}} + \alpha_{\hat{e}}} \Bigg) \\ & + \frac{\Delta\tau}{\Delta\tau} + \frac{V_{\hat{a}}\rho_{\hat{a}} \left(h_{1}^{k} - t_{1}^{k+1} \tilde{n}_{\hat{a}} - x_{\hat{a}}^{k+1} \left(r_{\hat{a}\,\hat{i}} + \tilde{n}_{\hat{a}\,\hat{i}} t_{1}^{k+1} \right) \right)}{\Delta\tau} + \Big(t_{\hat{1}\,\hat{\delta}}^{k+1} - t_{1}^{k+1} \Big) L_{\hat{1}\,\hat{\delta}}\rho_{\hat{a}} \tilde{n}_{\hat{a}} + \\ & + \Big(t_{2}^{k+1} - t_{1}^{k+1} \Big) L_{\hat{1}\,\hat{\delta}}\rho_{\hat{a}} \tilde{n}_{\hat{a}} = 0 \end{split} \tag{17}$$

где $t_{(n),2_1}^{\tilde{n}\hat{o}(P_{-})\,k+1}$ - температура внутренней поверхности стены, индекс в скобках соответствует ориентации стены по сторонам горизонта, °C; $\grave{A}^{P}_{\tilde{n}\tilde{o}-1}$ площадь стены в зоне 1, ${\rm M}^2$; $\alpha_2^{\rm n\~o}$ - коэффициент теплоотдачи от внутренней поверхности стен, кBт/(M^2 K); $j_{\tilde{n}\tilde{o}1}^{k+1}$ - расход инфильтрационного воздуха через стены 1-й зоны, кг/с; $\mathbf{h}_{\mathrm{i}}^{k+1}$ - энтальпия наружного воздуха, кДж/кг; $\mathbf{x}_{\hat{a}}^{k+1}$ - влагосодержание внутреннего воздуха, кг/кг; свп - изобарная удельная теплоемкость водяного пара, $c_{\text{вп}}$ =1,9 кДж/(кгК); $r_{\text{в.п.}}$ – удельная теплота парообразования при 0 °C, r=2500 кДж/кг; $Q_{\hat{1}\,\hat{a}\,\,1}^{\hat{a}\,\,k+1}$ - мощность «активного» оборудования, расположенного в 1-й зоне, кВт; $C_{\hat{1}\hat{a}}$ - теплоёмкость пассивного оборудования, кДж/(кг·К); $M_{\hat{1}\,\hat{a}1}$ - масса оборудования расположенного в 1-й зоне, кг; $t_{\hat{1}\,\hat{a}}^k$ - температура пассивного оборудования, \Box °C; $t_{\hat{1}\hat{e}\hat{0}}^{k+1}$ - температура окружения, \Box °C; $\alpha_{\hat{e}}$, $\alpha_{\ddot{e}}$ - конвективный и приведённый к конвективному виду, лучистый коэффициенты теплоотдачи от оборудования к воздуху, кВт/(м 2 K); $k_{_{1\acute{a}}}$ - постоянная времени для оборудования; $Q_{\hat{1}\,\hat{n}\hat{a}1}^{k+1}$ - мощность освещения, $B\tau; V_{\hat{a}}\,$ - объём зоны по внутреннему обмеру, ${\rm M}^3$; ${\rm h}_1^k$ - энтальпия воздуха 1-й зоны в k-й момент времени, кДж/кг; $t_{\tilde{i}\,\delta l}^{k+1}$ - температура приточного воздуха на уровне середины высоты первой зоны, □°С.

Полученные балансовые соотношения для каждой зоны образуют систему уравнений, которая решается следующими способами:

1. Задана температура внутреннего воздуха в каждой зоне (t_i).

Методом подстановки температур (t_i) в вышеприведённые уравнения находятся температуры приточного воздуха $(t_{\rm np\ i})$, нагрузки на систему кондиционирования в каждой зоне $(Q_{\rm ckb\ i})$ и суммарная нагрузка на систему кондиционирования $Q_{\rm ckb}$. Температура на внутренней поверхности ограждающих конструкций находится решением дифференциального уравнения теплопроводности.

2. Задана суммарная нагрузка на систему кондиционирования Q_{ckb} .

Задаются температурой воздуха в 1-й зоне $(t_{13ад})$. Из уравнения (18) находится температура приточного воздуха (t_{np-1}) . Далее находится температура внутреннего воздуха в нижней зоне (t_m) из выражения

$$Q_{\tilde{n}\hat{e}\hat{a}} = \left(t_{\tilde{n}\delta_{-0}} - t_{m}\right) L_{\tilde{n}\delta} \rho_{\hat{a}} \tilde{n}_{\hat{a}}, \qquad (20)$$

где $t_{\|\delta\|_0}$ – из выражений затухания температуры приточных струй.

В третьей главе разработанная и реализованная на ЭВМ математическая модель была проверена на действующем промышленном здании.

В качестве объекта, на котором была проверена модель динамического микроклимата, выбран один из корпусов машиностроительного завода ОАО «МКБ «Факел», находящегося в г.Химки Московской области. Данный корпус представляет собой одноэтажное здание цеха. Стены корпуса выполнены из глиняного кирпича на цементном растворе. Толщина стен 380 мм. Окна двойные в раздельных деревянных переплётах. Перекрытие выполнено из железобетонных пустотных плит толщиной 220 мм. В качестве теплоизоляционного материала покрытия применён пенобетон толщиной 100 мм плотностью 600 кг/м³. Гидроизоляционный материал покрытия — 3 слоя рубероида на битумной мастике. Объём здания по внутреннему обмеру составляет 58778 м³.

Изменения фактической средней температуры внутреннего воздуха, полученной путём замеров в нескольких точках корпуса, и температуры внутреннего воздуха, полученной в процессе моделирования, показаны на рис. 2

Динамика изменения температуры, полученная в результате расчёта, совпадает с замеренной, т.е. максимумы и минимумы рассчитанной зависимости наблюдаются в те же моменты времени, что и у замеренной зависимости. Абсолютные значения температур отличаются друг от друга не более чем на 1,5 °C. Правильность задания граничного условия на поверхностях ограждающих конструкций проверена тепловизионной съёмкой. Показания тепловизора пересчитаны с использованием степени черноты стен (ϵ) зависимости между термодинамической (τ) и радиационной (τ) температурами.

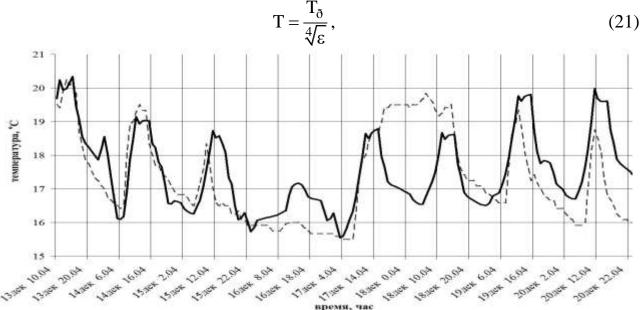


Рис.2. Изменение средней температуры внутреннего воздуха:

Фактическое изменение средней температуры внутреннего воздуха
Изменение температуры внутреннего воздуха (результат моделирования)
Сравнение замеров и расчетов температур дано на рис. 3 и в табл. 1.

Таблица 1. Сравнение рассчитанных температур и данных тепловизора

Ориентация стены по сторонам горизонта	Восток	Запад	Север	Юг
Температура, замеренная с помощью тепловизора, °С	6	6	5	9
Температура, рассчитанная с помощью модели дина-	1,1	0,2	-0,3	3,5
мического микроклимата, °С				
Относительная погрешность измерений, %	1,7	2,1	1,9	1,9

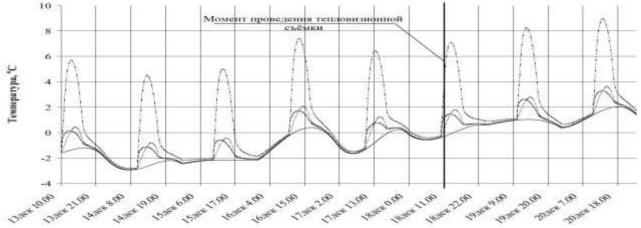


Рис. 3. Изменения температур наружных поверхностей стен во времени (расчёт):

температура на наружной поверхности северной стены температура на наружной поверхности восточной стены температура на наружной поверхности южной стены температура на наружной поверхности западной стены

В чемвёртой главе выполнено численное моделирование годового цикла эксплуатации промышленного здания с учётом создания в нём динамического микроклимата и реализации различных энергосберегающих мероприятий.

Технологические процессы, проходящие в здании, не позволяют снижать температуру внутреннего воздуха ниже 18 °C в любое время суток. Кроме того в рабочее время желательно повышение температуры на (3-4) °C.

Сравнение основных показателей эффективности всех вариантов моделирования представлено в табл. 2. За базовый взят вариант расчёта, учитывающий инфильтрацию и поддерживающий в нерабочее время температуру внутреннего воздуха 18 °C, а в рабочее 21°C. Теплозащита здания принята в соответствии с проектом. По отношению к этому варианту определены затраты теплоты и холода в % остальных вариантов моделирования.

Рассмотренное здание имеет большую площадь остекления и как следствие большие потери теплоты на нагрев инфильтрационного воздуха (49,6 % – из сопоставления годовых теплопотерь здания при наличии и отсутствии инфильтрации). Это снижает эффект применения части энергосберегающих мероприятий, в первую очередь установку тепловой изоляции на наружных стенах.

Таблица 2. Основные показатели эффективности вариантов моделирования

№ и краткая характеристика варианта	Годовые затраты	Годовые затраты
	теплоты СКВ,	холода СКВ,
	ГДж/год (% к ба-	ГДж/год (% к
	зовому варианту)	базовому варианту)

1. Отсутствие инфильтрации.	49534 (96,2)	3141 (93,8)
2. Наличие инфильтрации. (Базовый вариант).	51486 (100)	3347 (100)
3. Наличие инфильтрации, теплоизоляция стен с		
внутренней поверхности пенополистеролом δ=50мм,	51105 (99,3)	3293 (98,4)
4. Наличие инфильтрации, теплоизоляция стен с		
наружной поверхности пенополистеролом δ=50мм	51105 (99,3)	3293 (98,4)

продолжение таблицы 2.

№ и краткая характеристика варианта	Годовые затраты	Годовые затраты
	теплоты СКВ,	холода СКВ,
	ГДж/год (% к ба-	ГДж/год (% к
	зовому варианту)	базовому варианту)
5. Наличие инфильтрации, теплоизоляция стен с		
наружной поверхности пенополистеролом δ=100мм	50983 (99,0)	3285 (98,1)
6. Наличие инфильтрации, рециркуляция внутренне-		
го воздуха (n=95%)	5309 (10,3)	1571 (46,9)
7. Наличие инфильтрации, применение пластинчато-		
го рекуператора	42868 (83,3)	3344 (99,9)
8. Наличие инфильтрации, теплоизоляция стен с		
наружной поверхности пенополистеролом δ=50мм,		
рециркуляция внутреннего воздуха (п=95%)	4898 (9,5)	1550 (46,3)
9. Наличие инфильтрации, создание динамического		
микроклимата.	51583 (100,2)	3590 (107,3)

Самый эффективный вариант из всех рассмотренных — это применение рециркуляции. Однако она не всегда может быть разрешена. В таком случае на первое место по эффективности встаёт рекуперация теплоты (рис. 4).

Максимум эффективности составил 0,35 и достигался при температурах наружного воздуха около минус 5 °C. Однако, при температурах наружного воздуха ниже минус 8 °C возникает опасность замерзания поверхности нагрева со стороны выхода внутреннего воздуха. При наружной температуре выше плюс 5 °C происходит падение температурного напора в рекуператоре, и эффективность становится менее 0,1.

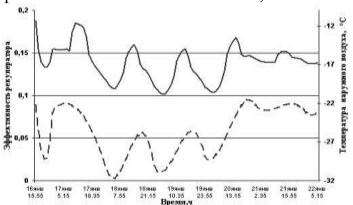
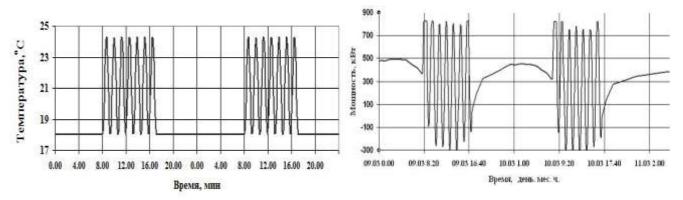



Рис. 4. Изменение эффективности рекуператора:
--- температура наружного воздуха
— эффективность рекуператора

В случае создания динамического микроклимата (9-й вариант) закон изменения температуры внутреннего воздуха представляет собой гармонические колебания с амплитудой 3,2 °С и частотой 4,8 1/ч. Верхняя граница колебаний 24,32 °С; нижняя 18,0 °С. В этом случае скорость изменения температуры внутреннего воздуха составляет 9,5 °С/ч, что больше минимально допустимого значения (4 °С/ч).

По требованиям технологического процесса в не рабочее время температура принималась равной 18 °C. Закон изменения температуры внутреннего воздуха для создания допустимого динамического микроклимата представлен на рис. 5. В период наибольших холодов (минус 28 °C и ниже) внутренний воздух успевал прогреться чуть выше 16 °C, и заданная динамика изменения температуры не выдерживалась из—за нехватки тепловой энергии. В остальные дни заданный закон был выдержан. На поддержание такого климата потребовались дополнительные затраты теплоты (0,2 %), и холода 7,3 %. На рис.5 и 6, в качестве примера. представлено изменение температуры внутреннего воздуха при создании динамического микроклимата и соответствующий ему график изме-

Рис. 5. Заданный закон изменения температуры внутреннего воздуха при организации ДМ

Рис. 6. Количество теплоты, подаваемое в помещение при создании ДМ

нения нагрузки на СКДМ за период, равный двум суткам. Очевидно, что система кондиционирования работает в резкопеременном режиме и регулирование нагрузки возможно только изменением температуры теплоносителя.

Выводы и основные результаты работы

- 1. Разработана математическая модель динамического микроклимата промышленного здания, учитывающая:
- воздействия наружного климата (температуру и относительную влажность наружного воздуха, солнечную радиацию);
- аккумуляцию теплоты многослойными ограждающими конструкциями, моделированием температурного поля при помощи численного решения дифференциального уравнения теплопроводности;
- изменение температуры воздуха по высоте помещения и может быть применима для многоэтажных зданий;
- эффективность применяемых энергосберегающих мероприятий: рециркуляция воздуха из рабочей зоны, установка пластинчатого рекуператора, изменение толщины и типа ограждающих конструкций;
- возможность управления системами кондиционирования промышленных зданий. В качестве управляющего воздействия используются данные о нагрузке на СКВ и потреблении тепла (холода) СКВ.

- 2. Решена сопряженная задача внешнего и внутреннего теплообмена в промышленном здании, устанавливающая взаимосвязь между нагрузкой на систему кондиционирования и динамическими тепловыми воздействиями на здание.
- 3. Разработан алгоритм реализации модели на ЭВМ, который позволяет решать задачи моделирования как на проектной стадии определение нагрузки на СКВ с учётом всех наружных и внутренних воздействий (вариант модели с заданной температурой внутреннего воздуха), так и задачи моделирования микроклимата в действующих зданиях, где мощность СКВ задана.
- 4. Проверена адекватность работы модели на действующем корпусе машиностроительного завода сопоставлением рассчитанных параметров внутреннего воздуха с замеренными. Проверка адекватности показала, что с применением разработанной модели возможно обеспечить рациональное энергопотребление промышленного здания при обеспечении заданного динамического микроклимата в годовом цикле эксплуатации здания.
- 5. Выполнено моделирование применения энергосберегающих мероприятий для рассмотренного промышленного здания. Высоко эффективными оказались применение рециркуляции и рекуперации теплоты. Годовая экономия теплоты в первом случае составила 89,7%, во втором 16,7%. Наибольший эффект даёт комплексное применение теплоизоляции и рециркуляции (90,5%).
- 6. Рассмотрено изменение температурного поля в многослойных наружных стенах здания в период низких наружных температур. С точи зрения теплои влагоустойчивости обоснована установка тепловой изоляции со стороны наружного воздуха.
- 7. Выполнено моделирование динамического микроклимата в рассматриваемом здании. Температура внутреннего воздуха была задана с учётом санитарно-гигиенических требований и параметров технологических процессов. Увеличение годовых затрат тепловой энергии всего на 0,2% и затрат холода на 7,3% позволило создать допустимый динамический микроклимат.
- 8. Выполнена экономическая оценка предложенных энергосберегающих мероприятий. Наибольший эффект даёт применение рециркуляции в комплексе с теплоизоляцией стен пенополистеролом 8,5 млн. руб/год, применение пластинчатого рекуператора 1,6 млн. руб/год. Создание динамического микроклимата для данного промышленного здания требует дополнительных годовых затрат, не превышающих 17 тыс.руб.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ Публикации по перечню рецензируемых изданий ВАК

- 1. **Гаранин, А.В.** Моделирование теплоустойчивости многослойных ограждающих конструкций. А.В. Гаранин, В.К. Пыжов // Вестник ИГЭУ 2004. Вып.6. С.20-24.
- 2. **Гаранин, А.В.** Построение модели динамического микроклимата для промышленного здания с учётом изменения температуры воздуха по его высоте А.В. Гаранин // Надёжность и безопасность энергетики №11. 09.2010. С.33-35

Публикации в других изданиях

- 3. **Гаранин, А.В**. Моделирование динамического микроклимата: Юбилейный сборник научных трудов к 100-летию со дня рождения профессора Черкасского Владимира Михайловича / А.В. Гаранин, В.К. Пыжов Иваново.: ГОУ ВПО "ИГЭУ имени В.И.Ленина", 2005. С.108-116.
- 4. **Гаранин, А.В.** Моделирование динамики тепловых процессов в ограждающих конструкциях / А.В. Гаранин, В.К. Пыжов. Региональная научнотехническая конференция студентов и аспирантов «Теплоэнергетика» Тез. докл. Иваново.: ГОУВПО "ИГЭУ имени В.И.Ленина", 2006. С.35-37.
- 5. **Гаранин, А.В.** О моделировании теплоустойчивости многослойных ограждений / А.В. Гаранин, В.К. Пыжов. Международная научно-техническая конференция «Состояние и перспективы развития энерготехнологии» (XIV Бенардосовские чтения) Тез. докл. Т.2 Иваново.: ГОУВПО "ИГЭУ имени В.И.Ленина". 2007. С.50.
- 6. **Гаранин, А.В.** О моделировании динамики тепловых процессов многослойных отсеков летательных аппаратов с уносом материала с поверхности / А.В. Гаранин. Международная научно-техническая конференция «Состояние и перспективы развития энерготехнологии» (XIV Бенардосовские чтения) Тез. докл. Т2 Иваново.: ГОУВПО "ИГЭУ имени В.И.Ленина". 2007. С.54.
- 7. **Гаранин, А.В.** Проверка адекватности математической модели динамического микроклимата производственного здания. /А.В. Гаранин, В.К. Пыжов. Энергия–2009: Программа региональной научно–технической конференции студентов и аспирантов. Иваново.: ГОУ ВПО "ИГЭУ имени В.И.Ленина". 2009. С.56.
- 8. **Гаранин, А.В.** Математическое моделирование динамического микроклимата промышленного здания и анализ изменения потребления теплоты и холода при выполнении энергосберегающих мероприятий / А.В. Гаранин, В.К. Пыжов. Международная научно-техническая конференция «Состояние и перспективы развития электротехнологии» (XV Бенардосовские чтения) Тез. докл. Т2 Иваново.: ГОУ ВПО "ИГЭУ имени В.И.Ленина". 2009. С.254.
- 9. **Гаранин, А.В.** Оценка адекватности математической модели динамического микроклимата промышленного здания на реальном объекте / А.В. Гаранин, В.К. Пыжов. Международная научно-техническая конференция «Состояние и перспективы развития электротехнологии» (XV Бенардосовские чтения) Тез. докл. Т2 Иваново.: ГОУ ВПО "ИГЭУ имени В.И.Ленина". 2009. С.255.

ГАРАНИН Алексей Валентинович

РАЗРАБОТКА СИСТЕМ ДИНАМИЧЕСКОГО МИКРОКЛИМАТА И СОЗДАНИЕ НА ИХ ОСНОВЕ ЭНЕРГОСБЕРЕГАЮЩИХ РЕЖИМОВ РАБОТЫ ОБОРУДОВАНИЯ

АВТОРЕФЕРАТ диссертации на соискание учёной степени

кандидата технических наук

Подписано в печать ____.09.2010. Формат 60х84 1/16 Печать плоская. Усл. печ. л. 1,39 тираж 100экз. Заказ № ГОУ ВПО «Ивановский государственный энергетический университет им. В.И. Ленина» 153003, Иваново, ул. Рабфаковская, 34 Отпечатано в УИУНЛ ИГЭУ.