Петров Петр Петрович **ПРИМЕР ОФОРМЛЕНИЯ ДОКЛАДА**

Аннотация на русском языке объёмом до 150 слов. В тексте аннотации указывается цель, задачи исследования и краткие выводы. После аннотации приводятся ключевые слова (словосочетания), несущие в тексте основную смысловую нагрузку (на русском и английском языках).

Ключевые слова не более 10, именительный падеж, единственное число, строчными буквами, через запятую.

Petrov Petr Petrovich **EXAMPLE OF THE PAPER**

Аннотация на английском языке объёмом до 150 слов. В тексте аннотации указывается цель, задачи исследования и краткие выводы. После аннотации приводятся ключевые слова (словосочетания), несущие в тексте основную смысловую нагрузку (на русском и английском языках).

Ключевые слова не более 10, именительный падеж, единственное число, строчными буквами, через запятую.

Введение

Объем публикуемых материалов доклада **4-6 машинописных страниц** формата **A4.** Текст набирается в соответствии с правилами компьютерного набора с одной стороны белого листа бумаги стандартного формата (A4), через 1 интервал. Редактор Word for Windows, шрифт Times New Roman, размер 14. Поля: правое - 1см, левое - 3см, верхнее и нижнее - 2см.

Заполнение последней старицы должно составлять не менее 75%

Обязательно предоставление Экспертного заключения о возможности открытого опубликования в виде цветной скан-копии!

Основная часть

Основная часть может иметь подразделы. В тексте следует использовать минимальное количество таблиц и иллюстраций. Рисунок должен иметь объяснения значений всех компонентов, порядковый номер, название, расположенное под рисунком. В тексте на рисунок дается ссылка. Таблица должна иметь порядковый номер, заголовок, расположенный над ней. Данные таблиц и рисунков не должны дублировать текст. Формулы оформляются в формульном редакторе MS Equation 3.0. Обязательно наличие пристатейного библиографического списка, оформленного по ГОСТ Р 7.0.100–2018. Нумерация в списке в порядке обращения к источнику. Ссылки в тексте заключаются в квадратные скобки. Ссылки на неопубликованные работы не допускаются. Список литературы должен включать не менее 10 источников.

Оформление формул.

Основой модели является множество объектов. На j-м этапе на отрезке времени Δt_i объект $O_l \in O$ описывается выражением

$$<\mathbf{t}_{j}, \mathbf{r}_{lj}, \mathbf{F}_{lj}, \mathbf{Q}_{lj}, \mathbf{G}_{lj}, \mathbf{H}_{lj}>,$$
 (1)

где r_{lj} – ресурс объекта на отрезке времени Δt_j ; F_{lj} – внешнее влияние на объект на j-м этапе; Q_{lj} – ограничения, накладываемые на объект на j-м этапе; G_{lj} – последствия при нарушении ограничения Q_{lj} ; H_{lj} – функция влияния объекта на j-м этапе.

Оформление списков

Базовыми компонентами предлагаемой интегральной инструментальной платформы (ИИП) являются:

- объекты, характеризующие организационные структуры и факторы,
 влияющие на них;
- правила и ограничения, формирующие область определения конкретной модели поведения организационной структуры и внешней среды;
- цели и критерии их достижения, как компоненты, характеризующие результат моделирования поведения организационной структуры.

Алгоритм функционирования ГСА можно условно разделить на три части:

- 1) формирование траекторного сигнала;
- 2) синтезирование апертуры;
- 3) построения ГЛИ.

Оформление таблиц.

Таблица 2 Значения параметров и временные ограничения работы системы

Параметр	Минимальное	Максимальное
	значение	значение
Время предустановки X, Y, S, нс	68	121
Время удержания X, Y, S, нс	3	10
Время задержки от фронта CLK до	2	25
установления данных, нс		
Период CLK, нс	15	336
Длительность импульса CLK, нс	35	70
Длительность паузы CLK, нс	123	156
Задержка латентности, тактов	12	24
Время предустановки X, Y, S, нс	68	121
Время удержания X, Y, S, нс	3	10
Время задержки от фронта CLK до	2	25
установления данных, нс		
Период CLK, нс	15	336

Параметр	Минимальное	Максимальное
	значение	значение
Длительность импульса CLK, нс	35	70
Длительность паузы CLK, нс	123	156
Задержка латентности, тактов	12	24

Оформление рисунков.

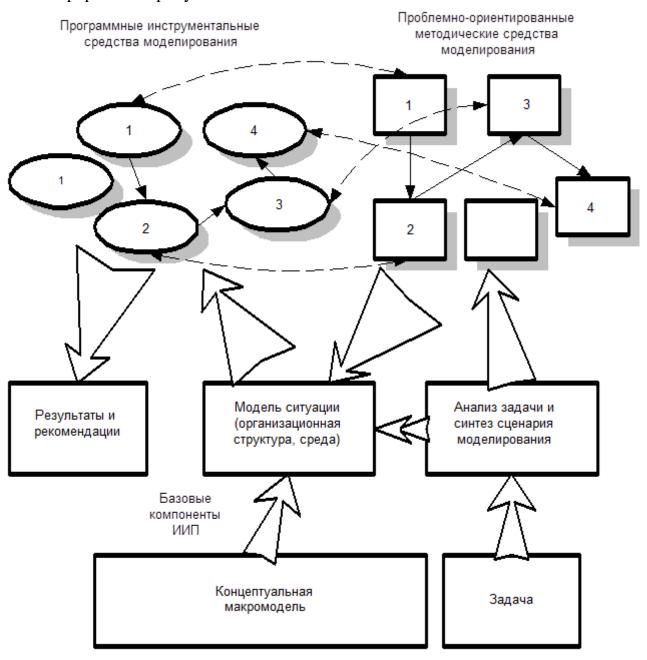


Рис. 1 Обобщенная схема взаимодействия элементов ИИП при моделировании поведения организационной структуры

Выводы

В выводах приводятся основные результаты проведенных исследований и разработок.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Криворучко И.М., Секачев Б.С. Принцип построения, структура и организация процессов тестирования в системах динамического диагностирования // Персональные исследовательские комплексы и автоматизированные рабочие места/ Тезисы докладов. Таганрог: 1991
- 2. Генератор сигналов // Профессиональное оборудование и технологии URL: http://www.signaltest.ru/content.php?id=39 (дата обращения: 15.02.2017).
- 3. Криворучко И.М., Куролесов Г.А., Макаров Л.Е., Секачев Б.С. Аппаратно-программные средства систем тестового диагностирования // Многопроцессорные вычислительные системы/ Таганрог: Изд-во ТРТИ, 1987
- 4. С.И. Клевцов, О.Н. Пьявченко. Моделирование процесса управления результатами деятельности предприятия в нестабильных условиях. // Материалы НТК «Компьютерные технологии в инженерной и управленческой деятельности». Ч.1. Таганрог: ТРТУ, 1998. С.20-29.
- 5. С.И. Клевцов. Структура и связи динамических объектов в модели целенаправленного развития организации в поле пространственно-временных ограничений и воздействий. // Известия ТРТУ. Таганрог: Изд-во ТРТУ, 2001, N03(21). С.3-10.
- 6. URL: https://cxem.net/software/soft_CAD.php (дата обращения 20.05.2024 г.).
- 7. Хернитер М.Е. Электронное моделирование в Multisim. М.: Книга по требованию, 2009. 500 с.
- 8. Шестеркин А.Н. Система моделирования и исследования радиоэлектронных устройств Multisim 10. М.: ДМК Пресс, 2015. 943 с.

Автор: Петров Петр Петрович, кандидат технических наук, начальник сектора Научно-технический центр «Техноцентр» Южного федерального университета, Россия, город Таганрог, улица Петровская 81, 347900, телефон: +7 (8634) 31-11-43, email: name@email.com.

Author: Petrov Petr Petrovich, Candidate of Technical Sciences (Ph.D.), team leader, Scientific and Technical Center "Technocenter" Southern Federal University, 347900, Russia, Taganrog, 81 Petrovskaya street, phone: +7 (8634) 31-11-43, email: name@email.com.